Cargando…
Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks
Intrusion detection systems (IDS) play a crucial role in securing networks and identifying malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic optimization algorithms and deep learning techniques have been applied to IDS to improve their accuracy and effi...
Autores principales: | Fatani, Abdulaziz, Dahou, Abdelghani, Abd Elaziz, Mohamed, Al-qaness, Mohammed A. A., Lu, Songfeng, Alfadhli, Saad Ali, Alresheedi, Shayem Saleh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181590/ https://www.ncbi.nlm.nih.gov/pubmed/37177634 http://dx.doi.org/10.3390/s23094430 |
Ejemplares similares
-
Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System
por: Fatani, Abdulaziz, et al.
Publicado: (2021) -
Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm
por: Dahou, Abdelghani, et al.
Publicado: (2022) -
Medical Image Classifications for 6G IoT-Enabled Smart Health Systems
por: Elaziz, Mohamed Abd, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
A Novel Feature-Selection Algorithm in IoT Networks for Intrusion Detection
por: Nazir, Anjum, et al.
Publicado: (2023)