Cargando…
EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT
The work carried out in this paper consists of the classification of the physiological signal generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous movements, when focusing on an object, generating a potential change in origin between the retinal epithelium a...
Autores principales: | Hernández Pérez, Sandy Nohemy, Pérez Reynoso, Francisco David, Gutiérrez, Carlos Alberto González, Cosío León, María De los Ángeles, Ortega Palacios, Rocío |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181598/ https://www.ncbi.nlm.nih.gov/pubmed/37177757 http://dx.doi.org/10.3390/s23094553 |
Ejemplares similares
-
Human–Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot
por: Pérez-Reynoso, Francisco David, et al.
Publicado: (2021) -
Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis
por: Issa, Mohamed F., et al.
Publicado: (2019) -
Internet Digital Economy Development Forecast Based on Artificial Intelligence and SVM-KNN Network Detection
por: Fu, Jianru, et al.
Publicado: (2022) -
A Video-Based DT–SVM School Violence Detecting Algorithm
por: Ye, Liang, et al.
Publicado: (2020) -
Alignment-free supervised classification of metagenomes by recursive SVM
por: Cui, Hongfei, et al.
Publicado: (2013)