Cargando…
Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar
Accurate prediction of wind power is of great significance to the stable operation of the power system and the vigorous development of the wind power industry. In order to further improve the accuracy of ultra-short-term wind power forecasting, an ultra-short-term wind power forecasting method based...
Autores principales: | Zhang, Jinhua, Zhao, Zhengyang, Yan, Jie, Cheng, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181600/ https://www.ncbi.nlm.nih.gov/pubmed/37177571 http://dx.doi.org/10.3390/s23094369 |
Ejemplares similares
-
Modelling and forecasting art movements with CGANs
por: Lisi, Edoardo, et al.
Publicado: (2020) -
Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM
por: Alsharekh, Mohammed F., et al.
Publicado: (2022) -
Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer
por: Xinxin, Wang, et al.
Publicado: (2023) -
CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany
por: Aksan, Fachrizal, et al.
Publicado: (2023) -
Solar Power Prediction Using Dual Stream CNN-LSTM Architecture
por: Alharkan, Hamad, et al.
Publicado: (2023)