Cargando…
Optimizing Battery Charging Using Neural Networks in the Presence of Unknown States and Parameters
This work investigates the effectiveness of deep neural networks within the realm of battery charging. This is done by introducing an innovative control methodology that not only ensures safety and optimizes the charging current, but also substantially reduces the computational complexity with respe...
Autores principales: | Pozzi, Andrea, Barbierato, Enrico, Toti, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181660/ https://www.ncbi.nlm.nih.gov/pubmed/37177604 http://dx.doi.org/10.3390/s23094404 |
Ejemplares similares
-
FGDB: a comprehensive graph database of ligand fragments from the Protein Data Bank
por: Toti, Daniele, et al.
Publicado: (2022) -
State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy
por: Navega Vieira, Rômulo, et al.
Publicado: (2022) -
State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks
por: Wang, Yu-Chun, et al.
Publicado: (2022) -
Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries
por: Lee, Jong-Hyun, et al.
Publicado: (2022) -
A quick battery charging curve prediction by artificial neural network
por: Hosen, Md Sazzad
Publicado: (2021)