Cargando…
A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures
A framework combining two powerful tools of hyperspectral imaging and deep learning for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-based approach that trains a three-dimensional convolutional neural network (3D-CNN) using the full seed spectral...
Autores principales: | Díaz-Martínez, Víctor, Orozco-Sandoval, Jairo, Manian, Vidya, Dhatt, Balpreet K., Walia, Harkamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181662/ https://www.ncbi.nlm.nih.gov/pubmed/37177572 http://dx.doi.org/10.3390/s23094370 |
Ejemplares similares
-
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
por: Orozco, Jairo, et al.
Publicado: (2023) -
Metabolic Dynamics of Developing Rice Seeds Under High Night-Time Temperature Stress
por: Dhatt, Balpreet K., et al.
Publicado: (2019) -
Evaluating metabolic and genomic data for predicting grain traits under high night temperature stress in rice
por: Bi, Ye, et al.
Publicado: (2023) -
Divergent phenotypic response of rice accessions to transient heat stress during early seed development
por: Paul, Puneet, et al.
Publicado: (2020) -
Allelic variation in rice Fertilization Independent Endosperm 1 contributes to grain width under high night temperature stress
por: Dhatt, Balpreet K., et al.
Publicado: (2020)