Cargando…

Uneven Terrain Recognition Using Neuromorphic Haptic Feedback

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot–ground interaction, and in particular about terrain irregularities, are...

Descripción completa

Detalles Bibliográficos
Autores principales: Prasanna, Sahana, D’Abbraccio, Jessica, Filosa, Mariangela, Ferraro, Davide, Cesini, Ilaria, Spigler, Giacomo, Aliperta, Andrea, Dell’Agnello, Filippo, Davalli, Angelo, Gruppioni, Emanuele, Crea, Simona, Vitiello, Nicola, Mazzoni, Alberto, Oddo, Calogero Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181691/
https://www.ncbi.nlm.nih.gov/pubmed/37177725
http://dx.doi.org/10.3390/s23094521
_version_ 1785041635233497088
author Prasanna, Sahana
D’Abbraccio, Jessica
Filosa, Mariangela
Ferraro, Davide
Cesini, Ilaria
Spigler, Giacomo
Aliperta, Andrea
Dell’Agnello, Filippo
Davalli, Angelo
Gruppioni, Emanuele
Crea, Simona
Vitiello, Nicola
Mazzoni, Alberto
Oddo, Calogero Maria
author_facet Prasanna, Sahana
D’Abbraccio, Jessica
Filosa, Mariangela
Ferraro, Davide
Cesini, Ilaria
Spigler, Giacomo
Aliperta, Andrea
Dell’Agnello, Filippo
Davalli, Angelo
Gruppioni, Emanuele
Crea, Simona
Vitiello, Nicola
Mazzoni, Alberto
Oddo, Calogero Maria
author_sort Prasanna, Sahana
collection PubMed
description Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot–ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.
format Online
Article
Text
id pubmed-10181691
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101816912023-05-13 Uneven Terrain Recognition Using Neuromorphic Haptic Feedback Prasanna, Sahana D’Abbraccio, Jessica Filosa, Mariangela Ferraro, Davide Cesini, Ilaria Spigler, Giacomo Aliperta, Andrea Dell’Agnello, Filippo Davalli, Angelo Gruppioni, Emanuele Crea, Simona Vitiello, Nicola Mazzoni, Alberto Oddo, Calogero Maria Sensors (Basel) Article Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot–ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb. MDPI 2023-05-06 /pmc/articles/PMC10181691/ /pubmed/37177725 http://dx.doi.org/10.3390/s23094521 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prasanna, Sahana
D’Abbraccio, Jessica
Filosa, Mariangela
Ferraro, Davide
Cesini, Ilaria
Spigler, Giacomo
Aliperta, Andrea
Dell’Agnello, Filippo
Davalli, Angelo
Gruppioni, Emanuele
Crea, Simona
Vitiello, Nicola
Mazzoni, Alberto
Oddo, Calogero Maria
Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title_full Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title_fullStr Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title_full_unstemmed Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title_short Uneven Terrain Recognition Using Neuromorphic Haptic Feedback
title_sort uneven terrain recognition using neuromorphic haptic feedback
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181691/
https://www.ncbi.nlm.nih.gov/pubmed/37177725
http://dx.doi.org/10.3390/s23094521
work_keys_str_mv AT prasannasahana uneventerrainrecognitionusingneuromorphichapticfeedback
AT dabbracciojessica uneventerrainrecognitionusingneuromorphichapticfeedback
AT filosamariangela uneventerrainrecognitionusingneuromorphichapticfeedback
AT ferrarodavide uneventerrainrecognitionusingneuromorphichapticfeedback
AT cesiniilaria uneventerrainrecognitionusingneuromorphichapticfeedback
AT spiglergiacomo uneventerrainrecognitionusingneuromorphichapticfeedback
AT alipertaandrea uneventerrainrecognitionusingneuromorphichapticfeedback
AT dellagnellofilippo uneventerrainrecognitionusingneuromorphichapticfeedback
AT davalliangelo uneventerrainrecognitionusingneuromorphichapticfeedback
AT gruppioniemanuele uneventerrainrecognitionusingneuromorphichapticfeedback
AT creasimona uneventerrainrecognitionusingneuromorphichapticfeedback
AT vitiellonicola uneventerrainrecognitionusingneuromorphichapticfeedback
AT mazzonialberto uneventerrainrecognitionusingneuromorphichapticfeedback
AT oddocalogeromaria uneventerrainrecognitionusingneuromorphichapticfeedback