Cargando…
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
The predictive maintenance of electrical machines is a critical issue for companies, as it can greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed th...
Autores principales: | Borré, Andressa, Seman, Laio Oriel, Camponogara, Eduardo, Stefenon, Stefano Frizzo, Mariani, Viviana Cocco, Coelho, Leandro dos Santos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181692/ https://www.ncbi.nlm.nih.gov/pubmed/37177716 http://dx.doi.org/10.3390/s23094512 |
Ejemplares similares
-
Optimized EWT-Seq2Seq-LSTM with Attention Mechanism to Insulators Fault Prediction
por: Klaar, Anne Carolina Rodrigues, et al.
Publicado: (2023) -
Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction
por: Stefenon, Stefano Frizzo, et al.
Publicado: (2023) -
Video-Based Human Activity Recognition Using Deep Learning Approaches
por: Surek, Guilherme Augusto Silva, et al.
Publicado: (2023) -
Wavelet LSTM for Fault Forecasting in Electrical Power Grids
por: Branco, Nathielle Waldrigues, et al.
Publicado: (2022) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023)