Cargando…
Fault-Diagnosis and Fault-Recovery System of Hall Sensors in Brushless DC Motor Based on Neural Networks †
This paper proposes a neural-network-based framework using Convolutional Neural Network and Long-Short Term Memory (CNN-LSTM) for detecting faults and recovering signals from Hall sensors in brushless DC motors. Hall sensors are critical components in determining the position and speed of motors, an...
Autores principales: | Chu, Kenny Sau Kang, Chew, Kuew Wai, Chang, Yoong Choon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181707/ https://www.ncbi.nlm.nih.gov/pubmed/37177551 http://dx.doi.org/10.3390/s23094330 |
Ejemplares similares
-
Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion
por: Suawa, Priscile, et al.
Publicado: (2022) -
Contactless Rotor Ground Fault Detection Method for Brushless Synchronous Machines Based on an AC/DC Rotating Current Sensor
por: Pardo-Vicente, Miguel A., et al.
Publicado: (2023) -
A Sage–Husa Prediction Algorithm-Based Approach for Correcting the Hall Sensor Position in DC Brushless Motors
por: Wang, Lu, et al.
Publicado: (2023) -
Dataset of audio signals from brushless DC motors for predictive maintenance
por: Prieto Estacio, Rommel Stiward, et al.
Publicado: (2023) -
Sensor Fault Detection and System Reconfiguration for DC-DC Boost Converter
por: Li, Jian, et al.
Publicado: (2018)