Cargando…
On the Stability and Homogeneous Ensemble of Feature Selection for Predictive Maintenance: A Classification Application for Tool Condition Monitoring in Milling
Feature selection (FS) represents an essential step for many machine learning-based predictive maintenance (PdM) applications, including various industrial processes, components, and monitoring tasks. The selected features not only serve as inputs to the learning models but also can influence furthe...
Autores principales: | Assafo, Maryam, Städter, Jost Philipp, Meisel, Tenia, Langendörfer, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181710/ https://www.ncbi.nlm.nih.gov/pubmed/37177665 http://dx.doi.org/10.3390/s23094461 |
Ejemplares similares
-
Efficient Prediction of Stability Boundaries in Milling Considering the Variation of Tool Features and Workpiece Materials
por: Sun, Huijuan, et al.
Publicado: (2023) -
Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions
por: Broseghini, M., et al.
Publicado: (2016) -
Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion
por: Suawa, Priscile, et al.
Publicado: (2022) -
Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images
por: Yang, Jing, et al.
Publicado: (2022) -
Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization
por: Kanthamneni, Naveen, et al.
Publicado: (2016)