Cargando…

A Collaborative Merging Method for Connected and Automated Vehicle Platoons in a Freeway Merging Area with Considerations for Safety and Efficiency

To solve the problems of congestion and accident risk when multiple vehicles merge into the merging area of a freeway, a platoon split collaborative merging (PSCM) method was proposed for an on-ramp connected and automated vehicle (CAV) platoon under a mixed traffic environment composed of human-dri...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Huan, Cen, Yanqing, Liu, Bo, Song, Xianghui, Liu, Hongben, Liu, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181721/
https://www.ncbi.nlm.nih.gov/pubmed/37177606
http://dx.doi.org/10.3390/s23094401
Descripción
Sumario:To solve the problems of congestion and accident risk when multiple vehicles merge into the merging area of a freeway, a platoon split collaborative merging (PSCM) method was proposed for an on-ramp connected and automated vehicle (CAV) platoon under a mixed traffic environment composed of human-driving vehicles (HDV) and CAVs. The PSCM method mainly includes two parts: merging vehicle motion control and merging effect evaluation. Firstly, the collision avoidance constraints of merging vehicles were analyzed, and on this basis, a following–merging motion rule was proposed. Then, considering the feasibility of and constraints on the stability of traffic flow during merging, a performance measurement function with safety and merging efficiency as optimization objectives was established to screen for the optimal splitting strategy. Simulation experiments under traffic demand of 1500 pcu/h/lane and CAV ratios of 30%, 50%, and 70% were conducted respectively. It was shown that under the 50% CAV ratio, the average travel time of the on-ramp CAV platoon was reduced by 50.7% under the optimal platoon split strategy compared with the no-split control strategy. In addition, the average travel time of main road vehicles was reduced by 27.9%. Thus, the proposed PSCM method is suitable for the merging control of on-ramp CAV platoons under the condition of heavy main road traffic demand.