Cargando…
Deep Learning Neural Network Performance on NDT Digital X-ray Radiography Images: Analyzing the Impact of Image Quality Parameters—An Experimental Study
In response to the growing inspection demand exerted by process automation in component manufacturing, non-destructive testing (NDT) continues to explore automated approaches that utilize deep-learning algorithms for defect identification, including within digital X-ray radiography images. This nece...
Autores principales: | Hena, Bata, Wei, Ziang, Castanedo, Clemente Ibarra, Maldague, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181732/ https://www.ncbi.nlm.nih.gov/pubmed/37177528 http://dx.doi.org/10.3390/s23094324 |
Ejemplares similares
-
Comparison of Cooled and Uncooled IR Sensors by Means of Signal-to-Noise Ratio for NDT Diagnostics of Aerospace Grade Composites
por: Deane, Shakeb, et al.
Publicado: (2020) -
Thermal imaging dataset from composite material academic samples inspected by pulsed thermography
por: Erazo-Aux, Jorge, et al.
Publicado: (2020) -
Defect Detection and Depth Estimation in Composite Materials for Pulsed Thermography Images by Nonuniform Heating Correction and Oriented Gradient Information
por: Erazo-Aux, Jorge, et al.
Publicado: (2023) -
X-ray Digital Radiography and Computed Tomography
por: Morigi, Maria Pia, et al.
Publicado: (2022) -
Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data
por: Fang, Qiang, et al.
Publicado: (2023)