Cargando…
HA-FPN: Hierarchical Attention Feature Pyramid Network for Object Detection
The goals of object detection are to accurately detect and locate objects of various sizes in digital images. Multi-scale processing technology can improve the detection accuracy of the detector. Feature pyramid networks (FPNs) have been proven to be effective in extracting multi-scaled features. Ho...
Autores principales: | Dang, Jin, Tang, Xiaofen, Li, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181737/ https://www.ncbi.nlm.nih.gov/pubmed/37177710 http://dx.doi.org/10.3390/s23094508 |
Ejemplares similares
-
ssFPN: Scale Sequence (S(2)) Feature-Based Feature Pyramid Network for Object Detection
por: Park, Hye-Jin, et al.
Publicado: (2023) -
MR-FPN: Multi-Level Residual Feature Pyramid Text Detection Network Based on Self-Attention Environment
por: Kang, Jianjun, et al.
Publicado: (2022) -
Adaptively Dense Feature Pyramid Network for Object Detection
por: PAN, HAODONG, et al.
Publicado: (2019) -
SEFPN: Scale-Equalizing Feature Pyramid Network for Object Detection
por: Zhang, Zhiqiang, et al.
Publicado: (2021) -
Voxel-FPN: Multi-Scale Voxel Feature Aggregation for 3D Object Detection from LIDAR Point Clouds
por: Kuang, Hongwu, et al.
Publicado: (2020)