Cargando…
Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data
Infrared thermography (IRT), is one of the most interesting techniques to identify different kinds of defects, such as delamination and damage existing for quality management of material. Objective detection and segmentation algorithms in deep learning have been widely applied in image processing, a...
Autores principales: | Fang, Qiang, Ibarra-Castanedo, Clemente, Garrido, Iván, Duan, Yuxia, Maldague, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181744/ https://www.ncbi.nlm.nih.gov/pubmed/37177648 http://dx.doi.org/10.3390/s23094444 |
Ejemplares similares
-
Defect Detection and Depth Estimation in Composite Materials for Pulsed Thermography Images by Nonuniform Heating Correction and Oriented Gradient Information
por: Erazo-Aux, Jorge, et al.
Publicado: (2023) -
Robust Principal Component Thermography for Defect Detection in Composites
por: Ebrahimi, Samira, et al.
Publicado: (2021) -
Thermal imaging dataset from composite material academic samples inspected by pulsed thermography
por: Erazo-Aux, Jorge, et al.
Publicado: (2020) -
Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms
por: Garrido, Iván, et al.
Publicado: (2021) -
Data Enhancement via Low-Rank Matrix Reconstruction in Pulsed Thermography for Carbon-Fibre-Reinforced Polymers
por: Ebrahimi, Samira, et al.
Publicado: (2021)