Cargando…
Semi-Supervised Deep Kernel Active Learning for Material Removal Rate Prediction in Chemical Mechanical Planarization
The material removal rate (MRR) is an important variable but difficult to measure in the chemical–mechanical planarization (CMP) process. Most data-based virtual metrology (VM) methods ignore the large number of unlabeled samples, resulting in a waste of information. In this paper, the semi-supervis...
Autores principales: | Lv, Chunpu, Huang, Jingwei, Zhang, Ming, Wang, Huangang, Zhang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181745/ https://www.ncbi.nlm.nih.gov/pubmed/37177595 http://dx.doi.org/10.3390/s23094392 |
Ejemplares similares
-
Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
por: Liu, Jiao, et al.
Publicado: (2019) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
por: Dong, Jiayi, et al.
Publicado: (2022) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010)