Cargando…
A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna
In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to create two sets of 1 ×...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181747/ https://www.ncbi.nlm.nih.gov/pubmed/37177613 http://dx.doi.org/10.3390/s23094400 |
Sumario: | In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to create two sets of 1 × 4 MMW substrate-integrated dielectric resonator antenna (SIDRA) arrays. With this proposed partial structure reuse strategy, the MW antenna and MMW arrays can be integrated in a shared-aperture manner, improving space utilization and enabling dual-polarized beam steering capability in the MMW band, which is highly desirable for multiple-input multipleoutput (MIMO) applications. The integrated antenna prototype was manufactured and measured for verification. The 3.5 GHz antenna has a relative bandwidth of 3.4% (3.44–3.56 GHz) with a peak antenna gain of 5.34 dBi, and the 28 GHz antenna arrays cover the frequency range of 26.5–29.8 GHz (11.8%) and attain a measured peak antenna gain of 11.0 dBi. Specifically, the 28 GHz antenna arrays can realize dual-polarization and ±45° beam steering capability. The dual-band antenna has a very compact structure, and it is applicable for 5G mobile communication terminals. |
---|