Cargando…
Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection
This paper delves into image detection based on distributed deep-learning techniques for intelligent traffic systems or self-driving cars. The accuracy and precision of neural networks deployed on edge devices (e.g., CCTV (closed-circuit television) for road surveillance) with small datasets may be...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181784/ https://www.ncbi.nlm.nih.gov/pubmed/37177550 http://dx.doi.org/10.3390/s23094347 |
_version_ | 1785041657281904640 |
---|---|
author | Tahir, Hassam Jung, Eun-Sung |
author_facet | Tahir, Hassam Jung, Eun-Sung |
author_sort | Tahir, Hassam |
collection | PubMed |
description | This paper delves into image detection based on distributed deep-learning techniques for intelligent traffic systems or self-driving cars. The accuracy and precision of neural networks deployed on edge devices (e.g., CCTV (closed-circuit television) for road surveillance) with small datasets may be compromised, leading to the misjudgment of targets. To address this challenge, TensorFlow and PyTorch were used to initialize various distributed model parallel and data parallel techniques. Despite the success of these techniques, communication constraints were observed along with certain speed issues. As a result, a hybrid pipeline was proposed, combining both dataset and model distribution through an all-reduced algorithm and NVlinks to prevent miscommunication among gradients. The proposed approach was tested on both an edge cluster and Google cluster environment, demonstrating superior performance compared to other test settings, with the quality of the bounding box detection system meeting expectations with increased reliability. Performance metrics, including total training time, images/second, cross-entropy loss, and total loss against the number of the epoch, were evaluated, revealing a robust competition between TensorFlow and PyTorch. The PyTorch environment’s hybrid pipeline outperformed other test settings. |
format | Online Article Text |
id | pubmed-10181784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101817842023-05-13 Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection Tahir, Hassam Jung, Eun-Sung Sensors (Basel) Article This paper delves into image detection based on distributed deep-learning techniques for intelligent traffic systems or self-driving cars. The accuracy and precision of neural networks deployed on edge devices (e.g., CCTV (closed-circuit television) for road surveillance) with small datasets may be compromised, leading to the misjudgment of targets. To address this challenge, TensorFlow and PyTorch were used to initialize various distributed model parallel and data parallel techniques. Despite the success of these techniques, communication constraints were observed along with certain speed issues. As a result, a hybrid pipeline was proposed, combining both dataset and model distribution through an all-reduced algorithm and NVlinks to prevent miscommunication among gradients. The proposed approach was tested on both an edge cluster and Google cluster environment, demonstrating superior performance compared to other test settings, with the quality of the bounding box detection system meeting expectations with increased reliability. Performance metrics, including total training time, images/second, cross-entropy loss, and total loss against the number of the epoch, were evaluated, revealing a robust competition between TensorFlow and PyTorch. The PyTorch environment’s hybrid pipeline outperformed other test settings. MDPI 2023-04-27 /pmc/articles/PMC10181784/ /pubmed/37177550 http://dx.doi.org/10.3390/s23094347 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tahir, Hassam Jung, Eun-Sung Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title | Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title_full | Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title_fullStr | Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title_full_unstemmed | Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title_short | Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection |
title_sort | comparative study on distributed lightweight deep learning models for road pothole detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181784/ https://www.ncbi.nlm.nih.gov/pubmed/37177550 http://dx.doi.org/10.3390/s23094347 |
work_keys_str_mv | AT tahirhassam comparativestudyondistributedlightweightdeeplearningmodelsforroadpotholedetection AT jungeunsung comparativestudyondistributedlightweightdeeplearningmodelsforroadpotholedetection |