Cargando…
Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors
Pervasive computing, human–computer interaction, human behavior analysis, and human activity recognition (HAR) fields have grown significantly. Deep learning (DL)-based techniques have recently been effectively used to predict various human actions using time series data from wearable sensors and mo...
Autores principales: | Jameer, Shaik, Syed, Hussain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181789/ https://www.ncbi.nlm.nih.gov/pubmed/37177523 http://dx.doi.org/10.3390/s23094319 |
Ejemplares similares
-
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022) -
Automatic Modulation Recognition Based on a DCN-BiLSTM Network
por: Liu, Kai, et al.
Publicado: (2021) -
Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM
por: Zheng, Jinsong, et al.
Publicado: (2022) -
Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN–SE–BiLSTM model
por: Li, Haiyang, et al.
Publicado: (2023) -
Digitization of Handwritten Chess Scoresheets with a BiLSTM Network
por: Majid, Nishatul, et al.
Publicado: (2022)