Cargando…
Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181824/ https://www.ncbi.nlm.nih.gov/pubmed/37067031 http://dx.doi.org/10.7554/eLife.81067 |
_version_ | 1785041662295146496 |
---|---|
author | Cumplido-Mayoral, Irene García-Prat, Marina Operto, Grégory Falcon, Carles Shekari, Mahnaz Cacciaglia, Raffaele Milà-Alomà, Marta Lorenzini, Luigi Ingala, Silvia Meije Wink, Alle Mutsaerts, Henk JMM Minguillón, Carolina Fauria, Karine Molinuevo, José Luis Haller, Sven Chetelat, Gael Waldman, Adam Schwarz, Adam J Barkhof, Frederik Suridjan, Ivonne Kollmorgen, Gwendlyn Bayfield, Anna Zetterberg, Henrik Blennow, Kaj Suárez-Calvet, Marc Vilaplana, Verónica Gispert, Juan Domingo |
author_facet | Cumplido-Mayoral, Irene García-Prat, Marina Operto, Grégory Falcon, Carles Shekari, Mahnaz Cacciaglia, Raffaele Milà-Alomà, Marta Lorenzini, Luigi Ingala, Silvia Meije Wink, Alle Mutsaerts, Henk JMM Minguillón, Carolina Fauria, Karine Molinuevo, José Luis Haller, Sven Chetelat, Gael Waldman, Adam Schwarz, Adam J Barkhof, Frederik Suridjan, Ivonne Kollmorgen, Gwendlyn Bayfield, Anna Zetterberg, Henrik Blennow, Kaj Suárez-Calvet, Marc Vilaplana, Verónica Gispert, Juan Domingo |
author_sort | Cumplido-Mayoral, Irene |
collection | PubMed |
description | Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury. |
format | Online Article Text |
id | pubmed-10181824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-101818242023-05-13 Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex Cumplido-Mayoral, Irene García-Prat, Marina Operto, Grégory Falcon, Carles Shekari, Mahnaz Cacciaglia, Raffaele Milà-Alomà, Marta Lorenzini, Luigi Ingala, Silvia Meije Wink, Alle Mutsaerts, Henk JMM Minguillón, Carolina Fauria, Karine Molinuevo, José Luis Haller, Sven Chetelat, Gael Waldman, Adam Schwarz, Adam J Barkhof, Frederik Suridjan, Ivonne Kollmorgen, Gwendlyn Bayfield, Anna Zetterberg, Henrik Blennow, Kaj Suárez-Calvet, Marc Vilaplana, Verónica Gispert, Juan Domingo eLife Medicine Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury. eLife Sciences Publications, Ltd 2023-04-17 /pmc/articles/PMC10181824/ /pubmed/37067031 http://dx.doi.org/10.7554/eLife.81067 Text en © 2023, Cumplido-Mayoral et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Medicine Cumplido-Mayoral, Irene García-Prat, Marina Operto, Grégory Falcon, Carles Shekari, Mahnaz Cacciaglia, Raffaele Milà-Alomà, Marta Lorenzini, Luigi Ingala, Silvia Meije Wink, Alle Mutsaerts, Henk JMM Minguillón, Carolina Fauria, Karine Molinuevo, José Luis Haller, Sven Chetelat, Gael Waldman, Adam Schwarz, Adam J Barkhof, Frederik Suridjan, Ivonne Kollmorgen, Gwendlyn Bayfield, Anna Zetterberg, Henrik Blennow, Kaj Suárez-Calvet, Marc Vilaplana, Verónica Gispert, Juan Domingo Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title | Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title_full | Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title_fullStr | Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title_full_unstemmed | Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title_short | Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex |
title_sort | biological brain age prediction using machine learning on structural neuroimaging data: multi-cohort validation against biomarkers of alzheimer’s disease and neurodegeneration stratified by sex |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181824/ https://www.ncbi.nlm.nih.gov/pubmed/37067031 http://dx.doi.org/10.7554/eLife.81067 |
work_keys_str_mv | AT cumplidomayoralirene biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT garciapratmarina biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT opertogregory biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT falconcarles biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT shekarimahnaz biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT cacciagliaraffaele biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT milaalomamarta biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT lorenziniluigi biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT ingalasilvia biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT meijewinkalle biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT mutsaertshenkjmm biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT minguilloncarolina biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT fauriakarine biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT molinuevojoseluis biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT hallersven biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT chetelatgael biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT waldmanadam biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT schwarzadamj biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT barkhoffrederik biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT suridjanivonne biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT kollmorgengwendlyn biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT bayfieldanna biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT zetterberghenrik biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT blennowkaj biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT suarezcalvetmarc biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT vilaplanaveronica biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT gispertjuandomingo biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex |