Cargando…

Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex

Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and...

Descripción completa

Detalles Bibliográficos
Autores principales: Cumplido-Mayoral, Irene, García-Prat, Marina, Operto, Grégory, Falcon, Carles, Shekari, Mahnaz, Cacciaglia, Raffaele, Milà-Alomà, Marta, Lorenzini, Luigi, Ingala, Silvia, Meije Wink, Alle, Mutsaerts, Henk JMM, Minguillón, Carolina, Fauria, Karine, Molinuevo, José Luis, Haller, Sven, Chetelat, Gael, Waldman, Adam, Schwarz, Adam J, Barkhof, Frederik, Suridjan, Ivonne, Kollmorgen, Gwendlyn, Bayfield, Anna, Zetterberg, Henrik, Blennow, Kaj, Suárez-Calvet, Marc, Vilaplana, Verónica, Gispert, Juan Domingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181824/
https://www.ncbi.nlm.nih.gov/pubmed/37067031
http://dx.doi.org/10.7554/eLife.81067
_version_ 1785041662295146496
author Cumplido-Mayoral, Irene
García-Prat, Marina
Operto, Grégory
Falcon, Carles
Shekari, Mahnaz
Cacciaglia, Raffaele
Milà-Alomà, Marta
Lorenzini, Luigi
Ingala, Silvia
Meije Wink, Alle
Mutsaerts, Henk JMM
Minguillón, Carolina
Fauria, Karine
Molinuevo, José Luis
Haller, Sven
Chetelat, Gael
Waldman, Adam
Schwarz, Adam J
Barkhof, Frederik
Suridjan, Ivonne
Kollmorgen, Gwendlyn
Bayfield, Anna
Zetterberg, Henrik
Blennow, Kaj
Suárez-Calvet, Marc
Vilaplana, Verónica
Gispert, Juan Domingo
author_facet Cumplido-Mayoral, Irene
García-Prat, Marina
Operto, Grégory
Falcon, Carles
Shekari, Mahnaz
Cacciaglia, Raffaele
Milà-Alomà, Marta
Lorenzini, Luigi
Ingala, Silvia
Meije Wink, Alle
Mutsaerts, Henk JMM
Minguillón, Carolina
Fauria, Karine
Molinuevo, José Luis
Haller, Sven
Chetelat, Gael
Waldman, Adam
Schwarz, Adam J
Barkhof, Frederik
Suridjan, Ivonne
Kollmorgen, Gwendlyn
Bayfield, Anna
Zetterberg, Henrik
Blennow, Kaj
Suárez-Calvet, Marc
Vilaplana, Verónica
Gispert, Juan Domingo
author_sort Cumplido-Mayoral, Irene
collection PubMed
description Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
format Online
Article
Text
id pubmed-10181824
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-101818242023-05-13 Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex Cumplido-Mayoral, Irene García-Prat, Marina Operto, Grégory Falcon, Carles Shekari, Mahnaz Cacciaglia, Raffaele Milà-Alomà, Marta Lorenzini, Luigi Ingala, Silvia Meije Wink, Alle Mutsaerts, Henk JMM Minguillón, Carolina Fauria, Karine Molinuevo, José Luis Haller, Sven Chetelat, Gael Waldman, Adam Schwarz, Adam J Barkhof, Frederik Suridjan, Ivonne Kollmorgen, Gwendlyn Bayfield, Anna Zetterberg, Henrik Blennow, Kaj Suárez-Calvet, Marc Vilaplana, Verónica Gispert, Juan Domingo eLife Medicine Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury. eLife Sciences Publications, Ltd 2023-04-17 /pmc/articles/PMC10181824/ /pubmed/37067031 http://dx.doi.org/10.7554/eLife.81067 Text en © 2023, Cumplido-Mayoral et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Medicine
Cumplido-Mayoral, Irene
García-Prat, Marina
Operto, Grégory
Falcon, Carles
Shekari, Mahnaz
Cacciaglia, Raffaele
Milà-Alomà, Marta
Lorenzini, Luigi
Ingala, Silvia
Meije Wink, Alle
Mutsaerts, Henk JMM
Minguillón, Carolina
Fauria, Karine
Molinuevo, José Luis
Haller, Sven
Chetelat, Gael
Waldman, Adam
Schwarz, Adam J
Barkhof, Frederik
Suridjan, Ivonne
Kollmorgen, Gwendlyn
Bayfield, Anna
Zetterberg, Henrik
Blennow, Kaj
Suárez-Calvet, Marc
Vilaplana, Verónica
Gispert, Juan Domingo
Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title_full Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title_fullStr Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title_full_unstemmed Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title_short Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex
title_sort biological brain age prediction using machine learning on structural neuroimaging data: multi-cohort validation against biomarkers of alzheimer’s disease and neurodegeneration stratified by sex
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181824/
https://www.ncbi.nlm.nih.gov/pubmed/37067031
http://dx.doi.org/10.7554/eLife.81067
work_keys_str_mv AT cumplidomayoralirene biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT garciapratmarina biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT opertogregory biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT falconcarles biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT shekarimahnaz biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT cacciagliaraffaele biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT milaalomamarta biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT lorenziniluigi biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT ingalasilvia biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT meijewinkalle biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT mutsaertshenkjmm biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT minguilloncarolina biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT fauriakarine biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT molinuevojoseluis biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT hallersven biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT chetelatgael biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT waldmanadam biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT schwarzadamj biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT barkhoffrederik biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT suridjanivonne biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT kollmorgengwendlyn biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT bayfieldanna biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT zetterberghenrik biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT blennowkaj biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT suarezcalvetmarc biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT vilaplanaveronica biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT gispertjuandomingo biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex
AT biologicalbrainagepredictionusingmachinelearningonstructuralneuroimagingdatamulticohortvalidationagainstbiomarkersofalzheimersdiseaseandneurodegenerationstratifiedbysex