Cargando…
Deep neural network for monitoring the growth of COVID-19 epidemic using meteorological covariates
Growth of an epidemic is influenced by the natural variation in climatic conditions and enforcement variation in government stringency policies. Though these variations do not prompt an instant change in the growth of an epidemic, effects of climatic conditions and stringency policies become apparen...
Autores principales: | Khan, Atikur R., Chowdhury, Abdul Hannan, Imon, Rahmatullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181870/ http://dx.doi.org/10.1016/j.iswa.2023.200234 |
Ejemplares similares
-
Effective Melanoma Recognition Using Deep Convolutional Neural Network with Covariance Discriminant Loss
por: Guo, Lei, et al.
Publicado: (2020) -
Meteorology and Epidemics of the Seventeenth Century
por: Winn, J. M.
Publicado: (1857) -
Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models
por: Shao, Yijun, et al.
Publicado: (2023) -
Section of Meteorology, Medical Topography, and Epidemic Diseases
Publicado: (1866) -
By-Laws of the Section of Meteorology, Medical Topography, and Epidemics
por: Davis, N. S.
Publicado: (1866)