Cargando…
Generative adversarial network for automatic quantification of Coronavirus disease 2019 pneumonia on chest radiographs
PURPOSE: To develop a generative adversarial network (GAN) to quantify COVID-19 pneumonia on chest radiographs automatically. MATERIALS AND METHODS: This retrospective study included 50,000 consecutive non-COVID-19 chest CT scans in 2015–2017 for training. Anteroposterior virtual chest, lung, and pn...
Autores principales: | Yoo, Seung-Jin, Kim, Hyungjin, Witanto, Joseph Nathanael, Inui, Shohei, Yoon, Jeong-Hwa, Lee, Ki-Deok, Choi, Yo Won, Goo, Jin Mo, Yoon, Soon Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181872/ https://www.ncbi.nlm.nih.gov/pubmed/37209462 http://dx.doi.org/10.1016/j.ejrad.2023.110858 |
Ejemplares similares
-
Mycobacterial cavity on chest computed tomography: clinical implications and deep learning-based automatic detection with quantification
por: Yoon, Ieun, et al.
Publicado: (2023) -
Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps
por: Nam, Ju Gang, et al.
Publicado: (2021) -
Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation
por: Choi, Hyewon, et al.
Publicado: (2020) -
Erratum: Extension of Coronavirus Disease 2019 (COVID-19) on Chest CT and Implications for Chest Radiograph Interpretation
por: Choi, Hyewon, et al.
Publicado: (2020)