Cargando…
AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications
Considering the unique properties of magnesium and its alloy, it has a vast demand in biomedical applications, particularly the implant material in tissue engineering due to its biodegradability. But the fixing spares must hold such implants till the end of the biodegradation of implant material. Th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181908/ https://www.ncbi.nlm.nih.gov/pubmed/37187465 http://dx.doi.org/10.1155/2023/6297372 |
_version_ | 1785041676391153664 |
---|---|
author | Sathish, T. Saravanan, R. Shreepad, Sarange Amuthan, T. Raj, J. Immanuel Durai Gaur, Piyush Vijayan, V. Rajkumar, S. |
author_facet | Sathish, T. Saravanan, R. Shreepad, Sarange Amuthan, T. Raj, J. Immanuel Durai Gaur, Piyush Vijayan, V. Rajkumar, S. |
author_sort | Sathish, T. |
collection | PubMed |
description | Considering the unique properties of magnesium and its alloy, it has a vast demand in biomedical applications, particularly the implant material in tissue engineering due to its biodegradability. But the fixing spares must hold such implants till the end of the biodegradation of implant material. The composite technology will offer the added benefits of altering the material properties to match the requirements of the desired applications. Hence, this experimental investigation is aimed at developing a composite material for manufacturing fixing spares like a screw for implants in biomedical applications. The matrix of AZ63 magnesium alloy is reinforced with nanoparticles of zirconium (Zr) and titanium (Ti) through the stir casting-type synthesis method. The samples were prepared with equal contributions of zirconium (Zr) and titanium (Ti) nanoparticles in the total reinforcement percentage (3%, 6%, 9%, and 12%). The corrosive and tribological studies were done. In the corrosive study, the process parameters like NaCl concentration, pH value, and exposure time were varied at three levels. In the wear study, the applied Load, speed of sliding, and the distance of the slide were considered at four levels. Taguchi analysis was employed in this investigation to optimize the reinforcement and independent factors to minimize the wear and corrosive losses. The minimum wear rate was achieved in the 12% reinforced sample with the input factor levels of 60 N of load on the pin, 1 m/s of disc speed at a sliding distance was 1500 m, and the 12% reinforce samples also recorded a minimum corrosive rate of 0.0076 mm/year at the operating environment of 5% NaCl-concentrated solution with the pH value of 9 for 24 hrs of exposure. The prediction model was developed based on the experimental results. |
format | Online Article Text |
id | pubmed-10181908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-101819082023-05-13 AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications Sathish, T. Saravanan, R. Shreepad, Sarange Amuthan, T. Raj, J. Immanuel Durai Gaur, Piyush Vijayan, V. Rajkumar, S. Biomed Res Int Research Article Considering the unique properties of magnesium and its alloy, it has a vast demand in biomedical applications, particularly the implant material in tissue engineering due to its biodegradability. But the fixing spares must hold such implants till the end of the biodegradation of implant material. The composite technology will offer the added benefits of altering the material properties to match the requirements of the desired applications. Hence, this experimental investigation is aimed at developing a composite material for manufacturing fixing spares like a screw for implants in biomedical applications. The matrix of AZ63 magnesium alloy is reinforced with nanoparticles of zirconium (Zr) and titanium (Ti) through the stir casting-type synthesis method. The samples were prepared with equal contributions of zirconium (Zr) and titanium (Ti) nanoparticles in the total reinforcement percentage (3%, 6%, 9%, and 12%). The corrosive and tribological studies were done. In the corrosive study, the process parameters like NaCl concentration, pH value, and exposure time were varied at three levels. In the wear study, the applied Load, speed of sliding, and the distance of the slide were considered at four levels. Taguchi analysis was employed in this investigation to optimize the reinforcement and independent factors to minimize the wear and corrosive losses. The minimum wear rate was achieved in the 12% reinforced sample with the input factor levels of 60 N of load on the pin, 1 m/s of disc speed at a sliding distance was 1500 m, and the 12% reinforce samples also recorded a minimum corrosive rate of 0.0076 mm/year at the operating environment of 5% NaCl-concentrated solution with the pH value of 9 for 24 hrs of exposure. The prediction model was developed based on the experimental results. Hindawi 2023-05-05 /pmc/articles/PMC10181908/ /pubmed/37187465 http://dx.doi.org/10.1155/2023/6297372 Text en Copyright © 2023 T. Sathish et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sathish, T. Saravanan, R. Shreepad, Sarange Amuthan, T. Raj, J. Immanuel Durai Gaur, Piyush Vijayan, V. Rajkumar, S. AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title | AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title_full | AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title_fullStr | AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title_full_unstemmed | AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title_short | AZ63/Ti/Zr Nanocomposite for Bone-Related Biomedical Applications |
title_sort | az63/ti/zr nanocomposite for bone-related biomedical applications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181908/ https://www.ncbi.nlm.nih.gov/pubmed/37187465 http://dx.doi.org/10.1155/2023/6297372 |
work_keys_str_mv | AT sathisht az63tizrnanocompositeforbonerelatedbiomedicalapplications AT saravananr az63tizrnanocompositeforbonerelatedbiomedicalapplications AT shreepadsarange az63tizrnanocompositeforbonerelatedbiomedicalapplications AT amuthant az63tizrnanocompositeforbonerelatedbiomedicalapplications AT rajjimmanueldurai az63tizrnanocompositeforbonerelatedbiomedicalapplications AT gaurpiyush az63tizrnanocompositeforbonerelatedbiomedicalapplications AT vijayanv az63tizrnanocompositeforbonerelatedbiomedicalapplications AT rajkumars az63tizrnanocompositeforbonerelatedbiomedicalapplications |