Cargando…

Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis

OBJECTIVES: The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. METHODS: PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases...

Descripción completa

Detalles Bibliográficos
Autores principales: Serafin, Marco, Baldini, Benedetta, Cabitza, Federico, Carrafiello, Gianpaolo, Baselli, Giuseppe, Del Fabbro, Massimo, Sforza, Chiarella, Caprioglio, Alberto, Tartaglia, Gianluca M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181977/
https://www.ncbi.nlm.nih.gov/pubmed/37093337
http://dx.doi.org/10.1007/s11547-023-01629-2

Ejemplares similares