Cargando…
Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis
OBJECTIVES: The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. METHODS: PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases...
Autores principales: | Serafin, Marco, Baldini, Benedetta, Cabitza, Federico, Carrafiello, Gianpaolo, Baselli, Giuseppe, Del Fabbro, Massimo, Sforza, Chiarella, Caprioglio, Alberto, Tartaglia, Gianluca M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181977/ https://www.ncbi.nlm.nih.gov/pubmed/37093337 http://dx.doi.org/10.1007/s11547-023-01629-2 |
Ejemplares similares
-
Cephalometric measurements performed on CBCT and reconstructed lateral cephalograms: a cross-sectional study providing a quantitative approach of differences and bias
por: Baldini, Benedetta, et al.
Publicado: (2022) -
3D Cephalometric Normality Range: Auto Contractive Maps (ACM) Analysis in Selected Caucasian Skeletal Class I Age Groups
por: Farronato, Marco, et al.
Publicado: (2022) -
CT-guided percutaneous drainage of abdominopelvic collections: a pictorial essay
por: De Filippo, Massimo, et al.
Publicado: (2021) -
Accuracy of automated patient positioning in CT using a 3D camera for body contour detection
por: Booij, Ronald, et al.
Publicado: (2018) -
Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients
por: Booij, Ronald, et al.
Publicado: (2020)