Cargando…
Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer
Recent advances in machine learning research, combined with the reduced sequencing costs enabled by modern next-generation sequencing, paved the way to the implementation of precision medicine through routine multi-omics molecular profiling of tumours. Thus, there is an emerging need of reliable mod...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182023/ https://www.ncbi.nlm.nih.gov/pubmed/37173325 http://dx.doi.org/10.1038/s41598-023-33954-x |
_version_ | 1785041701777178624 |
---|---|
author | Manganaro, L. Bianco, S. Bironzo, P. Cipollini, F. Colombi, D. Corà, D. Corti, G. Doronzo, G. Errico, L. Falco, P. Gandolfi, L. Guerrera, F. Monica, V. Novello, S. Papotti, M. Parab, S. Pittaro, A. Primo, L. Righi, L. Sabbatini, G. Sandri, A. Vattakunnel, S. Bussolino, F. Scagliotti, G.V. |
author_facet | Manganaro, L. Bianco, S. Bironzo, P. Cipollini, F. Colombi, D. Corà, D. Corti, G. Doronzo, G. Errico, L. Falco, P. Gandolfi, L. Guerrera, F. Monica, V. Novello, S. Papotti, M. Parab, S. Pittaro, A. Primo, L. Righi, L. Sabbatini, G. Sandri, A. Vattakunnel, S. Bussolino, F. Scagliotti, G.V. |
author_sort | Manganaro, L. |
collection | PubMed |
description | Recent advances in machine learning research, combined with the reduced sequencing costs enabled by modern next-generation sequencing, paved the way to the implementation of precision medicine through routine multi-omics molecular profiling of tumours. Thus, there is an emerging need of reliable models exploiting such data to retrieve clinically useful information. Here, we introduce an original consensus clustering approach, overcoming the intrinsic instability of common clustering methods based on molecular data. This approach is applied to the case of non-small cell lung cancer (NSCLC), integrating data of an ongoing clinical study (PROMOLE) with those made available by The Cancer Genome Atlas, to define a molecular-based stratification of the patients beyond, but still preserving, histological subtyping. The resulting subgroups are biologically characterized by well-defined mutational and gene-expression profiles and are significantly related to disease-free survival (DFS). Interestingly, it was observed that (1) cluster B, characterized by a short DFS, is enriched in KEAP1 and SKP2 mutations, that makes it an ideal candidate for further studies with inhibitors, and (2) over- and under-representation of inflammation and immune systems pathways in squamous-cell carcinomas subgroups could be potentially exploited to stratify patients treated with immunotherapy. |
format | Online Article Text |
id | pubmed-10182023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101820232023-05-14 Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer Manganaro, L. Bianco, S. Bironzo, P. Cipollini, F. Colombi, D. Corà, D. Corti, G. Doronzo, G. Errico, L. Falco, P. Gandolfi, L. Guerrera, F. Monica, V. Novello, S. Papotti, M. Parab, S. Pittaro, A. Primo, L. Righi, L. Sabbatini, G. Sandri, A. Vattakunnel, S. Bussolino, F. Scagliotti, G.V. Sci Rep Article Recent advances in machine learning research, combined with the reduced sequencing costs enabled by modern next-generation sequencing, paved the way to the implementation of precision medicine through routine multi-omics molecular profiling of tumours. Thus, there is an emerging need of reliable models exploiting such data to retrieve clinically useful information. Here, we introduce an original consensus clustering approach, overcoming the intrinsic instability of common clustering methods based on molecular data. This approach is applied to the case of non-small cell lung cancer (NSCLC), integrating data of an ongoing clinical study (PROMOLE) with those made available by The Cancer Genome Atlas, to define a molecular-based stratification of the patients beyond, but still preserving, histological subtyping. The resulting subgroups are biologically characterized by well-defined mutational and gene-expression profiles and are significantly related to disease-free survival (DFS). Interestingly, it was observed that (1) cluster B, characterized by a short DFS, is enriched in KEAP1 and SKP2 mutations, that makes it an ideal candidate for further studies with inhibitors, and (2) over- and under-representation of inflammation and immune systems pathways in squamous-cell carcinomas subgroups could be potentially exploited to stratify patients treated with immunotherapy. Nature Publishing Group UK 2023-05-12 /pmc/articles/PMC10182023/ /pubmed/37173325 http://dx.doi.org/10.1038/s41598-023-33954-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Manganaro, L. Bianco, S. Bironzo, P. Cipollini, F. Colombi, D. Corà, D. Corti, G. Doronzo, G. Errico, L. Falco, P. Gandolfi, L. Guerrera, F. Monica, V. Novello, S. Papotti, M. Parab, S. Pittaro, A. Primo, L. Righi, L. Sabbatini, G. Sandri, A. Vattakunnel, S. Bussolino, F. Scagliotti, G.V. Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title | Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title_full | Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title_fullStr | Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title_full_unstemmed | Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title_short | Consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
title_sort | consensus clustering methodology to improve molecular stratification of non-small cell lung cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182023/ https://www.ncbi.nlm.nih.gov/pubmed/37173325 http://dx.doi.org/10.1038/s41598-023-33954-x |
work_keys_str_mv | AT manganarol consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT biancos consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT bironzop consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT cipollinif consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT colombid consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT corad consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT cortig consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT doronzog consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT erricol consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT falcop consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT gandolfil consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT guerreraf consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT monicav consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT novellos consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT papottim consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT parabs consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT pittaroa consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT primol consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT righil consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT sabbatinig consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT sandria consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT vattakunnels consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT bussolinof consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer AT scagliottigv consensusclusteringmethodologytoimprovemolecularstratificationofnonsmallcelllungcancer |