Cargando…
Cytoprotective autophagy as a pro-survival strategy in ART-resistant malaria parasites
Despite several initiatives to subside the global malaria burden, the spread of artemisinin-resistant parasites poses a big threat to malaria elimination. Mutations in PfKelch13 are predictive of ART resistance, whose underpinning molecular mechanism remains obscure. Recently, endocytosis and stress...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182036/ https://www.ncbi.nlm.nih.gov/pubmed/37173329 http://dx.doi.org/10.1038/s41420-023-01401-5 |
Sumario: | Despite several initiatives to subside the global malaria burden, the spread of artemisinin-resistant parasites poses a big threat to malaria elimination. Mutations in PfKelch13 are predictive of ART resistance, whose underpinning molecular mechanism remains obscure. Recently, endocytosis and stress response pathways such as the ubiquitin-proteasome machinery have been linked to artemisinin resistance. With Plasmodium, however, ambiguity persists regarding a role in ART resistance for another cellular stress defence mechanism called autophagy. Therefore, we investigated whether, in the absence of ART treatment, basal autophagy is augmented in PfK13-R539T mutant ART-resistant parasites and analyzed whether PfK13-R539T endowed mutant parasites with an ability to utilize autophagy as a pro-survival strategy. We report that in the absence of any ART treatment, PfK13-R539T mutant parasites exhibit increased basal autophagy compared to PfK13-WT parasites and respond aggressively through changes in autophagic flux. A clear cytoprotective role of autophagy in parasite resistance mechanism is evident by the observation that a suppression of PI3-Kinase (PI3K) activity (a master autophagy regulator) rendered difficulty in the survival of PfK13-R539T ART-resistant parasites. In conclusion, we now show that higher PI3P levels reported for mutant PfKelch13 backgrounds led to increased basal autophagy that acts as a pro-survival response to ART treatment. Our results highlight PfPI3K as a druggable target with the potential to re-sensitize ART-resistant parasites and identify autophagy as a pro-survival function that modulates ART-resistant parasite growth. |
---|