Cargando…

Entanglement entropy and hyperuniformity of Ginibre and Weyl–Heisenberg ensembles

We show that, for a class of planar determinantal point processes (DPP) [Formula: see text] , the growth of the entanglement entropy [Formula: see text] of [Formula: see text] on a compact region [Formula: see text] , is related to the variance [Formula: see text] as follows: [Formula: see text] The...

Descripción completa

Detalles Bibliográficos
Autor principal: Abreu, Luís Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182133/
https://www.ncbi.nlm.nih.gov/pubmed/37187995
http://dx.doi.org/10.1007/s11005-023-01674-y
Descripción
Sumario:We show that, for a class of planar determinantal point processes (DPP) [Formula: see text] , the growth of the entanglement entropy [Formula: see text] of [Formula: see text] on a compact region [Formula: see text] , is related to the variance [Formula: see text] as follows: [Formula: see text] Therefore, such DPPs satisfy an area law [Formula: see text] , where [Formula: see text] is the boundary of [Formula: see text] if they are of Class I hyperuniformity ([Formula: see text] ), while the area law is violated if they are of Class II hyperuniformity (as [Formula: see text] , [Formula: see text] ). As a result, the entanglement entropy of Weyl–Heisenberg ensembles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity.