Cargando…
Entanglement entropy and hyperuniformity of Ginibre and Weyl–Heisenberg ensembles
We show that, for a class of planar determinantal point processes (DPP) [Formula: see text] , the growth of the entanglement entropy [Formula: see text] of [Formula: see text] on a compact region [Formula: see text] , is related to the variance [Formula: see text] as follows: [Formula: see text] The...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182133/ https://www.ncbi.nlm.nih.gov/pubmed/37187995 http://dx.doi.org/10.1007/s11005-023-01674-y |
Sumario: | We show that, for a class of planar determinantal point processes (DPP) [Formula: see text] , the growth of the entanglement entropy [Formula: see text] of [Formula: see text] on a compact region [Formula: see text] , is related to the variance [Formula: see text] as follows: [Formula: see text] Therefore, such DPPs satisfy an area law [Formula: see text] , where [Formula: see text] is the boundary of [Formula: see text] if they are of Class I hyperuniformity ([Formula: see text] ), while the area law is violated if they are of Class II hyperuniformity (as [Formula: see text] , [Formula: see text] ). As a result, the entanglement entropy of Weyl–Heisenberg ensembles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity. |
---|