Cargando…
HDL and chronic kidney disease
Low HDL-cholesterol (HDL-C) concentrations are a typical trait of the dyslipidemia associated with chronic kidney disease (CKD). In this condition, plasma HDLs are characterized by alterations in structure and function, and these particles can lose their atheroprotective functions, e.g., the ability...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182177/ https://www.ncbi.nlm.nih.gov/pubmed/37193017 http://dx.doi.org/10.1016/j.athplu.2023.04.001 |
Sumario: | Low HDL-cholesterol (HDL-C) concentrations are a typical trait of the dyslipidemia associated with chronic kidney disease (CKD). In this condition, plasma HDLs are characterized by alterations in structure and function, and these particles can lose their atheroprotective functions, e.g., the ability to promote cholesterol efflux from peripheral cells, anti-oxidant and anti-inflammatory proprieties and they can even become dysfunctional, i.e., exactly damaging. The reduction in plasma HDL-C levels appears to be the only lipid alteration clearly linked to the progression of renal disease in CKD patients. The association between the HDL system and CKD development and progression is also supported by the presence of genetic kidney alterations linked to HDL metabolism, including mutations in the APOA1, APOE, APOL and LCAT genes. Among these, renal disease associated with LCAT deficiency is well characterized and lipid abnormalities detected in LCAT deficiency carriers mirror the ones observed in CKD patients, being present also in acquired LCAT deficiency. This review summarizes the major alterations in HDL structure and function in CKD and how genetic alterations in HDL metabolism can be linked to kidney dysfunction. Finally, the possibility of targeting the HDL system as possible strategy to slow CKD progression is reviewed. |
---|