Cargando…
Overcoming cohort heterogeneity for the prediction of subclinical cardiovascular disease risk
Cardiovascular disease remains a leading cause of mortality with an estimated half a billion people affected in 2019. However, detecting signals between specific pathophysiology and coronary plaque phenotypes using complex multi-omic discovery datasets remains challenging due to the diversity of ind...
Autores principales: | Chan, Adam S., Wu, Songhua, Vernon, Stephen T., Tang, Owen, Figtree, Gemma A., Liu, Tongliang, Yang, Jean Y.H., Patrick, Ellis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182278/ https://www.ncbi.nlm.nih.gov/pubmed/37192969 http://dx.doi.org/10.1016/j.isci.2023.106633 |
Ejemplares similares
-
Lipidomics Profiling and Risk of Coronary Artery Disease in the BioHEART-CT Discovery Cohort
por: Zhu, Dantong, et al.
Publicado: (2023) -
Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study
por: Vernon, Stephen T., et al.
Publicado: (2021) -
A multi-step classifier addressing cohort heterogeneity improves performance of prognostic biomarkers in three cancer types
por: Patrick, Ellis, et al.
Publicado: (2016) -
Association of Global Coagulation Profiles With Cardiovascular Risk Factors and Atherosclerosis: A Sex Disaggregated Analysis From the BioHEART‐CT Study
por: Kott, Katharine A., et al.
Publicado: (2021) -
Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML
por: Lam, Stephen S.Y., et al.
Publicado: (2020)