Cargando…
SIRT2 inhibition by AGK2 enhances mycobacteria-specific stem cell memory responses by modulating beta-catenin and glycolysis
Bacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182326/ https://www.ncbi.nlm.nih.gov/pubmed/37192966 http://dx.doi.org/10.1016/j.isci.2023.106644 |
Sumario: | Bacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection and TB recurrence through enhanced stem cell memory (T(SCM)) responses. SIRT2 inhibition modulated the proteome landscape of CD4(+) T cells affecting pathways involved in cellular metabolism and T-cell differentiation. Precisely, AGK2 treatment enriched the IFNγ-producing T(SCM) cells by activating β-catenin and glycolysis. Furthermore, SIRT2 specifically targeted histone H3 and NF-κB p65 to induce proinflammatory responses. Finally, inhibition of the Wnt/β-catenin pathway abolished the protective effects of AGK2 treatment during BCG vaccination. Taken together, this study provides a direct link between BCG vaccination, epigenetics, and memory immune responses. We identify SIRT2 as a key regulator of memory T cells during BCG vaccination and project SIRT2 inhibitors as potential immunoprophylaxis against TB. |
---|