Cargando…

Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis

Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotati...

Descripción completa

Detalles Bibliográficos
Autores principales: Conroy, Lindsey R., Clarke, Harrison A., Allison, Derek B., Valenca, Samuel Santos, Sun, Qi, Hawkinson, Tara R., Young, Lyndsay E. A., Ferreira, Juanita E., Hammonds, Autumn V., Dunne, Jaclyn B., McDonald, Robert J., Absher, Kimberly J., Dong, Brittany E., Bruntz, Ronald C., Markussen, Kia H., Juras, Jelena A., Alilain, Warren J., Liu, Jinze, Gentry, Matthew S., Angel, Peggi M., Waters, Christopher M., Sun, Ramon C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182559/
https://www.ncbi.nlm.nih.gov/pubmed/37179348
http://dx.doi.org/10.1038/s41467-023-38437-1
_version_ 1785041780926840832
author Conroy, Lindsey R.
Clarke, Harrison A.
Allison, Derek B.
Valenca, Samuel Santos
Sun, Qi
Hawkinson, Tara R.
Young, Lyndsay E. A.
Ferreira, Juanita E.
Hammonds, Autumn V.
Dunne, Jaclyn B.
McDonald, Robert J.
Absher, Kimberly J.
Dong, Brittany E.
Bruntz, Ronald C.
Markussen, Kia H.
Juras, Jelena A.
Alilain, Warren J.
Liu, Jinze
Gentry, Matthew S.
Angel, Peggi M.
Waters, Christopher M.
Sun, Ramon C.
author_facet Conroy, Lindsey R.
Clarke, Harrison A.
Allison, Derek B.
Valenca, Samuel Santos
Sun, Qi
Hawkinson, Tara R.
Young, Lyndsay E. A.
Ferreira, Juanita E.
Hammonds, Autumn V.
Dunne, Jaclyn B.
McDonald, Robert J.
Absher, Kimberly J.
Dong, Brittany E.
Bruntz, Ronald C.
Markussen, Kia H.
Juras, Jelena A.
Alilain, Warren J.
Liu, Jinze
Gentry, Matthew S.
Angel, Peggi M.
Waters, Christopher M.
Sun, Ramon C.
author_sort Conroy, Lindsey R.
collection PubMed
description Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.
format Online
Article
Text
id pubmed-10182559
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101825592023-05-14 Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis Conroy, Lindsey R. Clarke, Harrison A. Allison, Derek B. Valenca, Samuel Santos Sun, Qi Hawkinson, Tara R. Young, Lyndsay E. A. Ferreira, Juanita E. Hammonds, Autumn V. Dunne, Jaclyn B. McDonald, Robert J. Absher, Kimberly J. Dong, Brittany E. Bruntz, Ronald C. Markussen, Kia H. Juras, Jelena A. Alilain, Warren J. Liu, Jinze Gentry, Matthew S. Angel, Peggi M. Waters, Christopher M. Sun, Ramon C. Nat Commun Article Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases. Nature Publishing Group UK 2023-05-13 /pmc/articles/PMC10182559/ /pubmed/37179348 http://dx.doi.org/10.1038/s41467-023-38437-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Conroy, Lindsey R.
Clarke, Harrison A.
Allison, Derek B.
Valenca, Samuel Santos
Sun, Qi
Hawkinson, Tara R.
Young, Lyndsay E. A.
Ferreira, Juanita E.
Hammonds, Autumn V.
Dunne, Jaclyn B.
McDonald, Robert J.
Absher, Kimberly J.
Dong, Brittany E.
Bruntz, Ronald C.
Markussen, Kia H.
Juras, Jelena A.
Alilain, Warren J.
Liu, Jinze
Gentry, Matthew S.
Angel, Peggi M.
Waters, Christopher M.
Sun, Ramon C.
Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title_full Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title_fullStr Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title_full_unstemmed Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title_short Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
title_sort spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182559/
https://www.ncbi.nlm.nih.gov/pubmed/37179348
http://dx.doi.org/10.1038/s41467-023-38437-1
work_keys_str_mv AT conroylindseyr spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT clarkeharrisona spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT allisonderekb spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT valencasamuelsantos spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT sunqi spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT hawkinsontarar spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT younglyndsayea spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT ferreirajuanitae spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT hammondsautumnv spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT dunnejaclynb spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT mcdonaldrobertj spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT absherkimberlyj spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT dongbrittanye spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT bruntzronaldc spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT markussenkiah spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT jurasjelenaa spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT alilainwarrenj spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT liujinze spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT gentrymatthews spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT angelpeggim spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT waterschristopherm spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis
AT sunramonc spatialmetabolomicsrevealsglycogenasanactionabletargetforpulmonaryfibrosis