Cargando…
Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Ana...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182851/ https://www.ncbi.nlm.nih.gov/pubmed/37140544 http://dx.doi.org/10.1093/bioinformatics/btad279 |
_version_ | 1785041839319941120 |
---|---|
author | Dill-McFarland, Kimberly A Mitchell, Kiana Batchu, Sashank Segnitz, Richard Max Benson, Basilin Janczyk, Tomasz Cox, Madison S Mayanja-Kizza, Harriet Boom, William Henry Benchek, Penelope Stein, Catherine M Hawn, Thomas R Altman, Matthew C |
author_facet | Dill-McFarland, Kimberly A Mitchell, Kiana Batchu, Sashank Segnitz, Richard Max Benson, Basilin Janczyk, Tomasz Cox, Madison S Mayanja-Kizza, Harriet Boom, William Henry Benchek, Penelope Stein, Catherine M Hawn, Thomas R Altman, Matthew C |
author_sort | Dill-McFarland, Kimberly A |
collection | PubMed |
description | MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html. |
format | Online Article Text |
id | pubmed-10182851 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101828512023-05-14 Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data Dill-McFarland, Kimberly A Mitchell, Kiana Batchu, Sashank Segnitz, Richard Max Benson, Basilin Janczyk, Tomasz Cox, Madison S Mayanja-Kizza, Harriet Boom, William Henry Benchek, Penelope Stein, Catherine M Hawn, Thomas R Altman, Matthew C Bioinformatics Original Paper MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html. Oxford University Press 2023-05-04 /pmc/articles/PMC10182851/ /pubmed/37140544 http://dx.doi.org/10.1093/bioinformatics/btad279 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Dill-McFarland, Kimberly A Mitchell, Kiana Batchu, Sashank Segnitz, Richard Max Benson, Basilin Janczyk, Tomasz Cox, Madison S Mayanja-Kizza, Harriet Boom, William Henry Benchek, Penelope Stein, Catherine M Hawn, Thomas R Altman, Matthew C Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title | Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title_full | Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title_fullStr | Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title_full_unstemmed | Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title_short | Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data |
title_sort | kimma: flexible linear mixed effects modeling with kinship covariance for rna-seq data |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182851/ https://www.ncbi.nlm.nih.gov/pubmed/37140544 http://dx.doi.org/10.1093/bioinformatics/btad279 |
work_keys_str_mv | AT dillmcfarlandkimberlya kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT mitchellkiana kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT batchusashank kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT segnitzrichardmax kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT bensonbasilin kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT janczyktomasz kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT coxmadisons kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT mayanjakizzaharriet kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT boomwilliamhenry kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT benchekpenelope kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT steincatherinem kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT hawnthomasr kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata AT altmanmatthewc kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata |