Cargando…

Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data

MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Dill-McFarland, Kimberly A, Mitchell, Kiana, Batchu, Sashank, Segnitz, Richard Max, Benson, Basilin, Janczyk, Tomasz, Cox, Madison S, Mayanja-Kizza, Harriet, Boom, William Henry, Benchek, Penelope, Stein, Catherine M, Hawn, Thomas R, Altman, Matthew C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182851/
https://www.ncbi.nlm.nih.gov/pubmed/37140544
http://dx.doi.org/10.1093/bioinformatics/btad279
_version_ 1785041839319941120
author Dill-McFarland, Kimberly A
Mitchell, Kiana
Batchu, Sashank
Segnitz, Richard Max
Benson, Basilin
Janczyk, Tomasz
Cox, Madison S
Mayanja-Kizza, Harriet
Boom, William Henry
Benchek, Penelope
Stein, Catherine M
Hawn, Thomas R
Altman, Matthew C
author_facet Dill-McFarland, Kimberly A
Mitchell, Kiana
Batchu, Sashank
Segnitz, Richard Max
Benson, Basilin
Janczyk, Tomasz
Cox, Madison S
Mayanja-Kizza, Harriet
Boom, William Henry
Benchek, Penelope
Stein, Catherine M
Hawn, Thomas R
Altman, Matthew C
author_sort Dill-McFarland, Kimberly A
collection PubMed
description MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html.
format Online
Article
Text
id pubmed-10182851
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101828512023-05-14 Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data Dill-McFarland, Kimberly A Mitchell, Kiana Batchu, Sashank Segnitz, Richard Max Benson, Basilin Janczyk, Tomasz Cox, Madison S Mayanja-Kizza, Harriet Boom, William Henry Benchek, Penelope Stein, Catherine M Hawn, Thomas R Altman, Matthew C Bioinformatics Original Paper MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html. Oxford University Press 2023-05-04 /pmc/articles/PMC10182851/ /pubmed/37140544 http://dx.doi.org/10.1093/bioinformatics/btad279 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Dill-McFarland, Kimberly A
Mitchell, Kiana
Batchu, Sashank
Segnitz, Richard Max
Benson, Basilin
Janczyk, Tomasz
Cox, Madison S
Mayanja-Kizza, Harriet
Boom, William Henry
Benchek, Penelope
Stein, Catherine M
Hawn, Thomas R
Altman, Matthew C
Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title_full Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title_fullStr Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title_full_unstemmed Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title_short Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
title_sort kimma: flexible linear mixed effects modeling with kinship covariance for rna-seq data
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182851/
https://www.ncbi.nlm.nih.gov/pubmed/37140544
http://dx.doi.org/10.1093/bioinformatics/btad279
work_keys_str_mv AT dillmcfarlandkimberlya kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT mitchellkiana kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT batchusashank kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT segnitzrichardmax kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT bensonbasilin kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT janczyktomasz kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT coxmadisons kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT mayanjakizzaharriet kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT boomwilliamhenry kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT benchekpenelope kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT steincatherinem kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT hawnthomasr kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata
AT altmanmatthewc kimmaflexiblelinearmixedeffectsmodelingwithkinshipcovarianceforrnaseqdata