Cargando…

In vitro ruminal degradability of wheat straw cultivated with white-rot fungi adapted to mushroom farming conditions

Biological treatment of cereal straw for ruminant nutrition purposes might present an environmentally friendly option of valorizing a widely available by-product of grain production for farming systems with low external input. Several strains of white-rot fungi have been selected in the past under m...

Descripción completa

Detalles Bibliográficos
Autores principales: Martens, Siriwan D., Wildner, Vicki, Zeyner, Annette, Steinhöfel, Olaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182975/
https://www.ncbi.nlm.nih.gov/pubmed/37179418
http://dx.doi.org/10.1038/s41598-023-34747-y
Descripción
Sumario:Biological treatment of cereal straw for ruminant nutrition purposes might present an environmentally friendly option of valorizing a widely available by-product of grain production for farming systems with low external input. Several strains of white-rot fungi have been selected in the past under mostly controlled laboratory conditions for their capacity of lignin degradation. The study adapted to conditions on farm for upscaling purposes. The development of the in vitro straw digestibility with two different moistening pre-treatments and inoculated with three different fungi species, namely Pleurotus ostreatus, Ceriporiopsis subvermispora and Volvariella volvacea, was determined up to 42 days of fermentation with five sampling times. The effect of physical straw pre-treatments on nutritional parameters was evaluated. The neutral detergent fiber digestibility (NDFD(30h)), enzymatically soluble organic substance (ELOS) and the gas production (Hohenheim Feed value Test, HFT) as indicators for in vitro ruminal degradability decreased over time independent of the fungus: HFT, ELOS and NDFD(30h) by up to 50, 35 and 30% of the original straw. Remoistening and autoclaving the straw increased the gas production significantly by 2.6 mL/200 g dry matter (DM), and ELOS and NDFD(30h) by 45 and 51 g/kg DM compared to the original straw (34.9 mL/200 mg DM, 342 g/kg DM, 313 g/kg NDF).