Cargando…
Microalgae in Bioplastic Production: A Comprehensive Review
The current era of industrialization includes a constantly increasing demand for plastic products, but because plastics are rarely recycled and are not biodegradable plastic pollution or “white pollution” has been the result. The consumption of petroleum-based plastics will be 20% of global annual o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183103/ https://www.ncbi.nlm.nih.gov/pubmed/37266400 http://dx.doi.org/10.1007/s13369-023-07871-0 |
Sumario: | The current era of industrialization includes a constantly increasing demand for plastic products, but because plastics are rarely recycled and are not biodegradable plastic pollution or “white pollution” has been the result. The consumption of petroleum-based plastics will be 20% of global annual oil by 2050, and thus there is an inevitable need to find an innovative solution to reduce plastic pollution. The biodegradable and environmentally benign bioplastics are suitable alternative to fossil-based plastics in the market due to sustainability, less carbon footprint, lower toxicity and high degradability rate. Microalgal species is an innovative approach to be explored and improved for bioplastic production. Microalgae are generally present in abundant quantity in our ecosystem, and polysaccharide in the algae can be processed and utilized to make biopolymers. Also, these species have a high growth rate and can be easily cultivated in wastewater streams. The review aims to determine the recent status of bioplastic production techniques from microalgal species and also reveal optimization opportunities involved in the process. Several strategies for bioplastic production from algal biomass are being discussed nowadays, and the most prominent are “with blending” (blending of algal biomass with bioplastics and starch) and “without blending” (microalgae as a feedstock for polyhydroxyalkanoates production). The advanced research on modern bioengineering techniques and well-established genetic tools like CRISPR–Cas9 should be encouraged to develop recombinant microalgae strains with elevated levels of PHA/PHB inside the cell. |
---|