Cargando…
Enhancing decision-making support by mining social media data with social network analysis
This paper explores the use of social network analysis (SNA) on airlines’ online social networks (OSNs) to extract valuable information for decision support, by analyzing interactions and discursive exchanges between users. The research is focused on fostering customer service of an airline company...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183308/ https://www.ncbi.nlm.nih.gov/pubmed/37216040 http://dx.doi.org/10.1007/s13278-023-01089-6 |
Sumario: | This paper explores the use of social network analysis (SNA) on airlines’ online social networks (OSNs) to extract valuable information for decision support, by analyzing interactions and discursive exchanges between users. The research is focused on fostering customer service of an airline company during a strike period, namely by detecting influential customers (whether satisfied or dissatisfied), address pending requests, and enhancing customer satisfaction, thus promoting issue-solving, and increasing responsiveness. The methodology involves analyzing data from the Facebook account of an airline company, using SNA to structure the data, and calculating metrics to detect possible situations to be addressed by customer service. The research concludes that it is possible to extract valuable information for decision support by analyzing the metrics that were built over the interactions and discursive exchanges between OSN users. SNA metrics enable to measure airline’s call-center performance in terms of speed of answer and customer satisfaction, to identify active users requiring additional support, as well as highly influential customers who may impact on the overall customer satisfaction, thus helping to resolve issues more efficiently. This study provides both theoretical and practical implications: it contributes to the existing literature by integrating social interaction and SNA for decision support in airline’s service context; and it provides practical insights into how companies can use SNA metrics to improve customer service. The research also highlights and corroborates the importance of monitoring social media interactions for decision-making and improving customer service. |
---|