Cargando…
An experimental porcine model of invasive candidiasis
BACKGROUND: Invasive candidiasis (IC) is a severe and often fatal fungal infection that affects critically ill patients. The development of animal models that mimic human disease is essential for advancing our understanding of IC pathophysiology and testing experimental or novel treatments. We aimed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183382/ https://www.ncbi.nlm.nih.gov/pubmed/37183195 http://dx.doi.org/10.1186/s40635-023-00514-6 |
Sumario: | BACKGROUND: Invasive candidiasis (IC) is a severe and often fatal fungal infection that affects critically ill patients. The development of animal models that mimic human disease is essential for advancing our understanding of IC pathophysiology and testing experimental or novel treatments. We aimed to develop a large animal model of IC that could provide a much-needed addition to the widely used murine models. RESULTS: A total of 25 pigs (including one control), aged between 9 and 12 weeks, with a median weight of 25.1 kg (IQR 24.1–26.2), were used to develop the porcine IC model. We present the setup, the results of the experiments, and the justification for the changes made to the model. The experiments were conducted in an intensive care setting, using clinically relevant anaesthesia, monitoring and interventions. The final model used corticosteroids, repeated Candida inoculation, and continuous endotoxin. The model consistently demonstrated quantifiable growth of Candida in blood and organs. The registered physiological data supported the development of the sepsis-induced circulatory distress observed in IC patients in the ICU. CONCLUSIONS: Our proposed porcine model of IC offers a potential new tool in the research of IC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-023-00514-6. |
---|