Cargando…
Atomic Electronic Structure Calculations with Hermite Interpolating Polynomials
[Image: see text] We have recently described the implementation of atomic electronic structure calculations within the finite element method with numerical radial basis functions of the form χ(μ)(r) = r(–1)B(μ)(r), where high-order Lagrange interpolating polynomials (LIPs) were used as the shape fun...
Autor principal: | Lehtola, Susi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184118/ https://www.ncbi.nlm.nih.gov/pubmed/37129275 http://dx.doi.org/10.1021/acs.jpca.3c00729 |
Ejemplares similares
-
Generation of multivariate Hermite interpolating polynomials
por: Tavares, Santiago Alves
Publicado: (2005) -
Convergence and norm estimates of Hermite interpolation at zeros of Chevyshev polynomials
por: Al-Khaled, Kamel, et al.
Publicado: (2016) -
Interpolation and approximation by polynomials
por: Phillips, George M
Publicado: (2003) -
Meta-GGA Density
Functional Calculations on Atoms
with Spherically Symmetric Densities in the Finite Element Formalism
por: Lehtola, Susi
Publicado: (2023) -
Assessment of Initial Guesses for Self-Consistent
Field Calculations. Superposition of Atomic Potentials: Simple yet
Efficient
por: Lehtola, Susi
Publicado: (2019)