Cargando…
Evolutionary mechanisms modulating the mammalian skull development
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184257/ https://www.ncbi.nlm.nih.gov/pubmed/37183900 http://dx.doi.org/10.1098/rstb.2022.0080 |
_version_ | 1785042129050927104 |
---|---|
author | Kyomen, Stella Murillo-Rincón, Andrea P. Kaucká, Markéta |
author_facet | Kyomen, Stella Murillo-Rincón, Andrea P. Kaucká, Markéta |
author_sort | Kyomen, Stella |
collection | PubMed |
description | Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue ‘The mammalian skull: development, structure and function’. |
format | Online Article Text |
id | pubmed-10184257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101842572023-05-16 Evolutionary mechanisms modulating the mammalian skull development Kyomen, Stella Murillo-Rincón, Andrea P. Kaucká, Markéta Philos Trans R Soc Lond B Biol Sci Articles Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue ‘The mammalian skull: development, structure and function’. The Royal Society 2023-07-03 2023-05-15 /pmc/articles/PMC10184257/ /pubmed/37183900 http://dx.doi.org/10.1098/rstb.2022.0080 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Kyomen, Stella Murillo-Rincón, Andrea P. Kaucká, Markéta Evolutionary mechanisms modulating the mammalian skull development |
title | Evolutionary mechanisms modulating the mammalian skull development |
title_full | Evolutionary mechanisms modulating the mammalian skull development |
title_fullStr | Evolutionary mechanisms modulating the mammalian skull development |
title_full_unstemmed | Evolutionary mechanisms modulating the mammalian skull development |
title_short | Evolutionary mechanisms modulating the mammalian skull development |
title_sort | evolutionary mechanisms modulating the mammalian skull development |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184257/ https://www.ncbi.nlm.nih.gov/pubmed/37183900 http://dx.doi.org/10.1098/rstb.2022.0080 |
work_keys_str_mv | AT kyomenstella evolutionarymechanismsmodulatingthemammalianskulldevelopment AT murillorinconandreap evolutionarymechanismsmodulatingthemammalianskulldevelopment AT kauckamarketa evolutionarymechanismsmodulatingthemammalianskulldevelopment |