Cargando…

Ploidy variation in Rhododendron subsection Maddenia and its implications for conservation

Polyploidy, which is common in plants, can confound taxon recognition and hence conservation assessments. In the taxonomically complex genus Rhododendron, 25 % of the over 1,300 taxa are considered under threat and 27 % Near Threatened or Data Deficient, with their taxonomy needing to be resolved ur...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Ling, Tate, Jennifer A, Gardiner, Susan E, MacKay, Marion
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184449/
https://www.ncbi.nlm.nih.gov/pubmed/37197711
http://dx.doi.org/10.1093/aobpla/plad016
Descripción
Sumario:Polyploidy, which is common in plants, can confound taxon recognition and hence conservation assessments. In the taxonomically complex genus Rhododendron, 25 % of the over 1,300 taxa are considered under threat and 27 % Near Threatened or Data Deficient, with their taxonomy needing to be resolved urgently. Although ploidy levels of Rhododendron taxa range from diploid (2x) to dodecaploid (12x) according to previous reports, the extent of polyploidy across the genus has not been examined. We first summarized the taxonomic distribution of polyploids in the genus based on the literature. Then as a case study, we estimated ploidy levels of 47 taxa in subsection Maddenia (subgenus Rhododendron, section Rhododendron) using flow cytometry, together with verification of meiotic chromosome counts for representative taxa. The summary of reported ploidy in Rhododendron indicates that polyploidy is most common in subgenera Pentanthera and Rhododendron. In subsection Maddenia, all examined taxa are diploids except for the R. maddenii complex that shows a high ploidy variation (2–8x, 12x). We investigated ploidy level of 12 taxa in subsection Maddenia for the first time, and estimated genome sizes of two Rhododendron species. Knowledge of ploidy levels will inform phylogenetic analysis of unresolved species complexes. Overall, our study of subsection Maddenia provides a model for examining multiple issues including taxonomic complexity, ploidy variation and geographic distribution in relation to biodiversity conservation.