Cargando…

Inflammatory macrophage to hepatocyte signals can be prevented by extracellular vesicle reprogramming

Macrophage-derived extracellular vesicles (EVs) play key roles in intercellular communication. Within the liver, they have been linked to several inflammatory diseases including nonalcoholic fatty liver disease (NAFLD). In this study, we found that inflammatory macrophages cause injury to hepatocyte...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Priyanka, Sasaki, Kyo, Pulido Ruiz, Isabel Aranzazu, King, Kayla E., Weinman, Steven A., Wozniak, Ann L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184766/
https://www.ncbi.nlm.nih.gov/pubmed/37051862
http://dx.doi.org/10.1242/jcs.260691
Descripción
Sumario:Macrophage-derived extracellular vesicles (EVs) play key roles in intercellular communication. Within the liver, they have been linked to several inflammatory diseases including nonalcoholic fatty liver disease (NAFLD). In this study, we found that inflammatory macrophages cause injury to hepatocytes, in part by a cell–cell crosstalk phenomenon involving the secretion of EVs containing pro-inflammatory cargo. Incorporation of these inflammatory signals into EV requires the cleavage of the trafficking adaptor protein RILP, which, as previously shown, results from inflammasome-mediated caspase-1 activation. RILP cleavage can be blocked by overexpressing a dominant negative, non-cleavable form of RILP (ncRILP). EV preparations from ncRILP-expressing cells are, by themselves, sufficient to suppress inflammatory effects in hepatocytes. These results suggest that both direct RILP manipulation and/or supplying ncRILP-modified EVs could be used as a novel therapy for the treatment of inflammatory liver diseases.