Cargando…
Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets
This paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data fo...
Autores principales: | Sahiner, Mehmet, McMillan, David G., Kambouroudis, Dimos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185465/ http://dx.doi.org/10.1007/s12197-023-09629-8 |
Ejemplares similares
-
Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods
por: Sahiner, Mehmet
Publicado: (2022) -
Complex network analysis of volatility spillovers between global financial indicators and G20 stock markets
por: Korkusuz, Burak, et al.
Publicado: (2022) -
Integration of genetic algorithm with artificial neural network for stock market forecasting
por: Sharma, Dinesh K., et al.
Publicado: (2021) -
How to Promote the Performance of Parametric Volatility Forecasts in the Stock Market? A Neural Networks Approach
por: Su, Jung-Bin
Publicado: (2021) -
Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting
por: Mücher, Christian
Publicado: (2022)