Cargando…
A general model to predict small molecule substrates of enzymes based on machine and deep learning
For most proteins annotated as enzymes, it is unknown which primary and/or secondary reactions they catalyze. Experimental characterizations of potential substrates are time-consuming and costly. Machine learning predictions could provide an efficient alternative, but are hampered by a lack of infor...
Autores principales: | Kroll, Alexander, Ranjan, Sahasra, Engqvist, Martin K. M., Lercher, Martin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185530/ https://www.ncbi.nlm.nih.gov/pubmed/37188731 http://dx.doi.org/10.1038/s41467-023-38347-2 |
Ejemplares similares
-
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning
por: Kroll, Alexander, et al.
Publicado: (2023) -
Deep learning allows genome-scale prediction of Michaelis constants from structural features
por: Kroll, Alexander, et al.
Publicado: (2021) -
On the optimality of the enzyme–substrate relationship in bacteria
por: Dourado, Hugo, et al.
Publicado: (2021) -
Learning deep representations of enzyme thermal adaptation
por: Li, Gang, et al.
Publicado: (2022) -
Discovering de novo peptide substrates for enzymes using machine learning
por: Tallorin, Lorillee, et al.
Publicado: (2018)