Cargando…
Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer’s disease
Despite decades of genetic studies on late-onset Alzheimer’s disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We deline...
Autores principales: | Merchant, Julie P., Zhu, Kuixi, Henrion, Marc Y. R., Zaidi, Syed S. A., Lau, Branden, Moein, Sara, Alamprese, Melissa L., Pearse, Richard V., Bennett, David A., Ertekin-Taner, Nilüfer, Young-Pearse, Tracy L., Chang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185548/ https://www.ncbi.nlm.nih.gov/pubmed/37188718 http://dx.doi.org/10.1038/s42003-023-04791-5 |
Ejemplares similares
-
Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
por: Carcamo-Orive, Ivan, et al.
Publicado: (2020) -
Genetics of Alzheimer disease in the pre- and post-GWAS era
por: Ertekin-Taner, Nilüfer
Publicado: (2010) -
Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer's disease
por: Ertekin-Taner, Nilüfer
Publicado: (2011) -
Alternative Approaches in Gene Discovery and Characterization in Alzheimer’s Disease
por: Ertekin-Taner, Nilüfer, et al.
Publicado: (2013) -
Microglial function, INPP5D/SHIP1 signaling, and NLRP3 inflammasome activation: implications for Alzheimer’s disease
por: Terzioglu, Gizem, et al.
Publicado: (2023)