Cargando…

Third harmonic imaging contrast from tubular structures in the presence of index discontinuity

Accurate interpretation of third harmonic generation (THG) microscopy images in terms of sample optical properties and microstructure is generally hampered by the presence of excitation field distortions resulting from sample heterogeneity. Numerical methods that account for these artifacts need to...

Descripción completa

Detalles Bibliográficos
Autores principales: Morizet, Joséphine, Olivier, Nicolas, Mahou, Pierre, Boutillon, Arthur, Stringari, Chiara, Beaurepaire, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185661/
https://www.ncbi.nlm.nih.gov/pubmed/37188736
http://dx.doi.org/10.1038/s41598-023-34528-7
Descripción
Sumario:Accurate interpretation of third harmonic generation (THG) microscopy images in terms of sample optical properties and microstructure is generally hampered by the presence of excitation field distortions resulting from sample heterogeneity. Numerical methods that account for these artifacts need to be established. In this work, we experimentally and numerically analyze the THG contrast obtained from stretched hollow glass pipettes embedded in different liquids. We also characterize the nonlinear optical properties of 2,2[Formula: see text] -thiodiethanol (TDE), a water-soluble index-matching medium. We find that index discontinuity not only changes the level and modulation amplitude of polarization-resolved THG signals, but can even change the polarization direction producing maximum THG near interfaces. We then show that a finite-difference time-domain (FDTD) modeling strategy can accurately account for contrast observed in optically heterogeneous samples, whereas reference Fourier-based numerical approaches are accurate only in the absence of index mismatch. This work opens perspectives for interpreting THG microscopy images of tubular objects and other geometries.