Cargando…
AROS: Affordance Recognition with One-Shot Human Stances
We present Affordance Recognition with One-Shot Human Stances (AROS), a one-shot learning approach that uses an explicit representation of interactions between highly articulated human poses and 3D scenes. The approach is one-shot since it does not require iterative training or retraining to add new...
Autores principales: | Pacheco-Ortega, Abel, Mayol-Cuevas, Walterio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185755/ https://www.ncbi.nlm.nih.gov/pubmed/37205224 http://dx.doi.org/10.3389/frobt.2023.1076780 |
Ejemplares similares
-
Visual Odometry Using Pixel Processor Arrays for Unmanned Aerial Systems in GPS Denied Environments
por: McConville, Alexander, et al.
Publicado: (2020) -
The Intentional Stance Test-2: How to Measure the Tendency to Adopt Intentional Stance Towards Robots
por: Spatola, Nicolas, et al.
Publicado: (2021) -
One-shot learning for autonomous aerial manipulation
por: Zito, Claudio, et al.
Publicado: (2022) -
O(2)A: One-Shot Observational Learning with Action Vectors
por: Pauly, Leo, et al.
Publicado: (2021) -
Identification of COM Controller of a Human in Stance Based on Motion Measurement and Phase-Space Analysis
por: Sugihara, Tomomichi, et al.
Publicado: (2022)