Cargando…
KISL: knowledge-injected semi-supervised learning for biological co-expression network modules
The exploration of important biomarkers associated with cancer development is crucial for diagnosing cancer, designing therapeutic interventions, and predicting prognoses. The analysis of gene co-expression provides a systemic perspective on gene networks and can be a valuable tool for mining biomar...
Autores principales: | Xiao, Gangyi, Guan, Renchu, Cao, Yangkun, Huang, Zhenyu, Xu, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185879/ https://www.ncbi.nlm.nih.gov/pubmed/37205122 http://dx.doi.org/10.3389/fgene.2023.1151962 |
Ejemplares similares
-
Semi-supervised spectral clustering with application to detect population stratification
por: Liu, Binghui, et al.
Publicado: (2013) -
On protocols and measures for the validation of supervised methods for the inference of biological networks
por: Schrynemackers, Marie, et al.
Publicado: (2013) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020) -
Semi-supervised learning /
Publicado: (2010) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022)