Cargando…

Contextual Lateralization Based on Interaural Level Differences Is Preshaped by the Auditory Periphery and Predominantly Immune Against Sequential Segregation

The perceived azimuth of a target sound is determined by the interaural time difference and the interaural level difference (ILD) and is subject to contextual effects from precursor sounds. This study characterized ILD-based precursor effects (PEs) for high-frequency stimuli in a total of seven norm...

Descripción completa

Detalles Bibliográficos
Autor principal: Laback, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185981/
https://www.ncbi.nlm.nih.gov/pubmed/37161352
http://dx.doi.org/10.1177/23312165231171988
Descripción
Sumario:The perceived azimuth of a target sound is determined by the interaural time difference and the interaural level difference (ILD) and is subject to contextual effects from precursor sounds. This study characterized ILD-based precursor effects (PEs) for high-frequency stimuli in a total of seven normal-hearing listeners. In Experiment 1, precursor and target were band-pass-filtered noises approximately centered at 4 kHz (1.2- and 1-octave bandwidth, respectively) separated by a 10-ms gap. The effects of precursor location (ipsilateral, contralateral, and central) on the perceived target azimuth were measured using a head-pointing task. Relative to control trials without a precursor, ipsilateral precursors biased the perceived target azimuth toward midline (medial bias) and contralateral precursors biased it contralaterally (lateral bias). Central precursors caused a symmetric lateral bias. An auditory periphery model that determines the “internal” ILD at the auditory nerve level, including either realistic efferent compression control or auditory nerve adaptation, explained about 50% of the variance in the PEs. These within-trial PEs were accompanied by an across-trial PE, inducing medial bias. Experiment 2 studied the role of sequential segregation in the within-trial PE by introducing a pitch difference between precursor and target. Segregation conditions caused increased PE for ipsilateral, no effect for contralateral, and either no effect or reduced PE for central precursors. Overall, the ILD-based within-trial PE appears to be preshaped already in the auditory periphery and the mechanism underlying at least the ipsilateral PE appears to be immune against sequential segregation.