Cargando…
Protocol for developing a personalised prediction model for viral suppression among under-represented populations in the context of the COVID-19 pandemic
INTRODUCTION: Sustained viral suppression, an indicator of long-term treatment success and mortality reduction, is one of four strategic areas of the ‘Ending the HIV Epidemic’ federal campaign launched in 2019. Under-represented populations, like racial or ethnic minority populations, sexual and gen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186088/ https://www.ncbi.nlm.nih.gov/pubmed/37188476 http://dx.doi.org/10.1136/bmjopen-2022-070869 |
Sumario: | INTRODUCTION: Sustained viral suppression, an indicator of long-term treatment success and mortality reduction, is one of four strategic areas of the ‘Ending the HIV Epidemic’ federal campaign launched in 2019. Under-represented populations, like racial or ethnic minority populations, sexual and gender minority groups, and socioeconomically disadvantaged populations, are disproportionately affected by HIV and experience a more striking virological failure. The COVID-19 pandemic might magnify the risk of incomplete viral suppression among under-represented people living with HIV (PLWH) due to interruptions in healthcare access and other worsened socioeconomic and environmental conditions. However, biomedical research rarely includes under-represented populations, resulting in biased algorithms. This proposal targets a broadly defined under-represented HIV population. It aims to develop a personalised viral suppression prediction model using machine learning (ML) techniques by incorporating multilevel factors using All of Us (AoU) data. METHODS AND ANALYSIS: This cohort study will use data from the AoU research programme, which aims to recruit a broad, diverse group of US populations historically under-represented in biomedical research. The programme harmonises data from multiple sources on an ongoing basis. It has recruited ~4800 PLWH with a series of self-reported survey data (eg, Lifestyle, Healthcare Access, COVID-19 Participant Experience) and relevant longitudinal electronic health records data. We will examine the change in viral suppression and develop personalised viral suppression prediction due to the impact of the COVID-19 pandemic using ML techniques, such as tree-based classifiers (classification and regression trees, random forest, decision tree and eXtreme Gradient Boosting), support vector machine, naïve Bayes and long short-term memory. ETHICS AND DISSEMINATION: The institutional review board approved the study at the University of South Carolina (Pro00124806) as a Non-Human Subject study. Findings will be published in peer-reviewed journals and disseminated at national and international conferences and through social media. |
---|