Cargando…
Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli
MOTIVATION: Constraint-based modeling approaches allow the estimation of maximal in vivo enzyme catalytic rates that can serve as proxies for enzyme turnover numbers. Yet, genome-scale flux profiling remains a challenge in deploying these approaches to catalogue proxies for enzyme catalytic rates ac...
Autores principales: | Xu, Rudan, Razaghi-Moghadam, Zahra, Nikoloski, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186155/ https://www.ncbi.nlm.nih.gov/pubmed/34358300 http://dx.doi.org/10.1093/bioinformatics/btab575 |
Ejemplares similares
-
Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony
por: Hashemi, Seirana, et al.
Publicado: (2023) -
Data integration across conditions improves turnover number estimates and metabolic predictions
por: Wendering, Philipp, et al.
Publicado: (2023) -
Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data
por: Razaghi-Moghadam, Zahra, et al.
Publicado: (2020) -
GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level
por: Razaghi-Moghadam, Zahra, et al.
Publicado: (2020) -
Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis
por: Seep, Lea, et al.
Publicado: (2021)