Cargando…
Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer
OBJECTIVE: High-risk prostate cancer (PCa) is often treated by prostate-only radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease progression following PORT. Conventional clinical factors may...
Autores principales: | Ching, Jerry C. F., Lam, Saikit, Lam, Cody C. H., Lui, Angie O. Y., Kwong, Joanne C. K., Lo, Anson Y. H., Chan, Jason W. H., Cai, Jing, Leung, W. S., Lee, Shara W. Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186349/ https://www.ncbi.nlm.nih.gov/pubmed/37205204 http://dx.doi.org/10.3389/fonc.2023.1060687 |
Ejemplares similares
-
Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling
por: Zhang, Yuan-Peng, et al.
Publicado: (2023) -
CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features
por: Wang, Yiang, et al.
Publicado: (2023) -
Assessment of CT to CBCT contour mapping for radiomic feature analysis in prostate cancer
por: Schmidt, Ryder M., et al.
Publicado: (2021) -
Radiomics-Based Artificial Intelligence Differentiation of Neurodegenerative Diseases with Reference to the Volumetry
por: Cheung, Eva Y. W., et al.
Publicado: (2022) -
T-cell large granular lymphocyte leukemia: an Asian perspective
por: Kwong, Yok-Lam, et al.
Publicado: (2010)