Cargando…
Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’ anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medica...
Autores principales: | Zhang, Yuan-Peng, Zhang, Xin-Yun, Cheng, Yu-Ting, Li, Bing, Teng, Xin-Zhi, Zhang, Jiang, Lam, Saikit, Zhou, Ta, Ma, Zong-Rui, Sheng, Jia-Bao, Tam, Victor C. W., Lee, Shara W. Y., Ge, Hong, Cai, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186733/ https://www.ncbi.nlm.nih.gov/pubmed/37189155 http://dx.doi.org/10.1186/s40779-023-00458-8 |
Ejemplares similares
-
Radiomics-Based Detection of COVID-19 from Chest X-ray Using Interpretable Soft Label-Driven TSK Fuzzy Classifier
por: Zhang, Yuanpeng, et al.
Publicado: (2022) -
Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma
por: Teng, Xinzhi, et al.
Publicado: (2022) -
Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer
por: Ching, Jerry C. F., et al.
Publicado: (2023) -
Building reliable radiomic models using image perturbation
por: Teng, Xinzhi, et al.
Publicado: (2022) -
The application of artificial intelligence and radiomics in lung cancer
por: Zhou, Yaojie, et al.
Publicado: (2020)