Cargando…
Identifying size-dependent toxin sorting in bacterial outer membrane vesicles
Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. Despite being isolated from a single population of bacteria, OMVs can exhibit heterogeneous size and toxin content, which can be obscured by assays that measure ensemble...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187208/ https://www.ncbi.nlm.nih.gov/pubmed/37205353 http://dx.doi.org/10.1101/2023.05.03.539273 |
Sumario: | Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. Despite being isolated from a single population of bacteria, OMVs can exhibit heterogeneous size and toxin content, which can be obscured by assays that measure ensemble properties. To address this issue, we utilize fluorescence imaging of individual OMVs to reveal size-dependent toxin sorting. Our results showed that the oral bacterium Aggregatibacter actinomycetemcomitans (A.a.) produces OMVs with a bimodal size distribution, where larger OMVs were much more likely to possess leukotoxin (LtxA). Among the smallest OMVs (< 100 nm diameter), the fraction that are toxin positive ranges from 0–30%, while the largest OMVs (> 200 nm diameter) are between 70–100% toxin positive. Our single OMV imaging method provides a non-invasive way to observe OMV surface heterogeneity at the nanoscale level and determine size-based heterogeneities without the need for OMV fraction separation. |
---|